ীজগণিত আরবি الجبر (“আল-জাবর” অর্থ “ভাঙা জিনিস পুনঃগঠিত করা”) শব্দ থেকে এসেছে এবং শব্দটি ফার্সি গণিতবিদ এবং জ্যোতির্বিজ্ঞানী আল খারিজমি রচিত নবম শতাব্দীর প্রথম দিকের বই ইলমুল জাবর ওয়াল মুকাবালাহ্ (“পুনর্গঠন এবং ভারসাম্যের বিজ্ঞান”) শিরোনাম থেকে এসেছে। আল-জাবর শব্দটি দিয়ে তার রচনায় তিনি সমীকরণের এক দিক থেকে পদ অন্য দিকে নিয়ে যাওয়ার পদক্ষেপকে বুঝিয়েছিলেন, المقابلة (আল-মুকাবালাহ্, অর্থগ “ভারসাম্য”) দ্বারা উভয় পক্ষে সমান পদ যুক্ত করার বিষয়টিকে তিনি বুঝিয়েছিলেন। লাতিন ভাষায় আলজেবার অথবা আলজেবরা নামে সংক্ষিপ্ত হয়ে, অবশেষে পঞ্চদশ শতাব্দীতে স্পেনীয়, ইতালীয় বা মধ্যযুগীয় লাতিন ভাষা হয়ে ইংরেজি ভাষায় প্রবেশ করে। এটি প্রকৃতপক্ষে, ভাঙা বা স্থানচ্যুত হাড় স্থাপনের শল্য চিকিৎসার পদ্ধতিকে বোঝায়। গাণিতিক অর্থ (ইংরেজিতে) ষোড়শ শতাব্দীতে প্রথম নথিভূক্ত করা হয়েছিল।[৫]

বীজগণিত শব্দের বিভিন্ন অর্থ[সম্পাদনা]
“বীজগণিত” এর একক শব্দ বা পরিবর্ধকবাচক শব্দসহ গণিতে বেশ কয়েকটি সম্পর্কিত অর্থ রয়েছে।

কোনও পদাশ্রিত নির্দেশক (article) ব্যতীত, একক শব্দ হিসেবে “বীজগণিত” গণিতের একটি বিস্তৃত অংশের নাম।
একটি পদাশ্রিত নির্দেশক বা বহুবচনসহ একক শব্দ হিসেবে, “একটি বীজগণিত” বা “বীজগণিত” একটি নির্দিষ্ট গাণিতিক কাঠামো বোঝায়, যার সুনির্দিষ্ট সংজ্ঞা প্রসঙ্গের উপর নির্ভর করে। সাধারণত, কাঠামোর একটি যোগ, গুণ এবং স্কেলার গুণ রয়েছে (একটি ক্ষেত্রের উপরে বীজগণিত দেখুন)। কিছু লেখক যখন “বীজগণিত” শব্দটি ব্যবহার করেন, তখন তারা নিম্নলিখিতঃ সংযোজন, বিনিময়,অভেদক , এবং / অথবা, সসীম-মাত্রার অতিরিক্ত অনুমানের একটি উপসেট ব্যবহার করে থাকেন। সর্বজনীন বীজগণিতে, “বীজগণিত” শব্দটি উপরের ধারণার একটি সাধারণীকরণকে বোঝায়, যা এন-অ্যারি ক্রিয়াকলাপের অনুমতি দিয়ে থাকে।
একটি পরিবর্ধকবাচক শব্দসহ, এখানে একই ধরনের পার্থক্য দেখা যায়:
পদাশ্রিত নির্দেশক ব্যতীত নামটি বীজগণিতের একটি অংশকে বোঝায়, যেমনঃ রৈখিক বীজগণিত, প্রাথমিক বীজগণিত (প্রতীক-নিপুণভাবে ব্যবহার বিধি গণিতের প্রাথমিক কোর্সে প্রাথমিক ও মাধ্যমিক শিক্ষার অংশ হিসাবে শেখানো হয়), বা বিমূর্ত বীজগণিত (বিমূর্ত বীজগণিত অধ্যয়নকারীদের জন্য)।
একটি পদাশ্রিত নির্দেশকসহ এর দ্বারা উদাহরণস্বরূপঃ কিছুটা বিমূর্ত কাঠামোকে বোঝায়, যেমনঃ একটি লাই বীজগণিত, একটি সহযোগী বীজগণিত, বা একটি শীর্ষ অপারেটর বীজগণিত।
কখনও কখনও উভয় অর্থ একই যোগ্যতার জন্য উপস্থিত থাকে। যেমনঃ এক বাক্যে: বিনিময় বীজগণিত হল বিনিময় রিংগুলির অধ্যয়ন, যা পূর্ণসংখ্যার উপর বিনিময় বীজগণিত।
গণিতের একটি শাখা হিসেবে “বীজগণিত”[সম্পাদনা]
বীজগণিত পাটিগণিতের মতো হিসাব-নিকাশ দিয়ে শুরু হয়েছিল, যেখানে অক্ষর সংখ্যার মান ধারণ করতে পারে।[৪] যা যেকোন সংখ্যার জন্য ধর্মসমূহের প্রমাণ করতে সাহায্য করে।

{\displaystyle ax^{2}+bx+c=0,}
{\displaystyle a,b,c} যে কোনও সংখ্যা হতে পারে (তবে, a= {\displaystyle 0} হতে পারবে না), এবং দ্বিঘাত সূত্রটি অজানা চলক x এর মানগুলি দ্রুত এবং সহজেই বের করতে ব্যবহার করা যেতে পারে, যা সমীকরণকে সিদ্ধ করবে। এর অর্থ, সমীকরণের সমস্ত সমাধান সন্ধান করা।

ঐতিহাসিকভাবে এবং বর্তমান শিক্ষা ব্যবস্থায় বীজগণিতের অধ্যয়ন উপরের দ্বিঘাত সমীকরণের মতো সমীকরণের সমাধানের মাধ্যমে শুরু হয়। তারপরে আরও সাধারণ প্রশ্ন যেমন “একটি সমীকরণের সমাধান আছে কি?”, “একটি সমীকরণের কতগুলি সমাধান আছে?”, “সমাধানগুলির প্রকৃতি সম্পর্কে কী বলা যেতে পারে?” বিবেচনা করা হয়ে থাকে। এই প্রশ্নগুলো পরবর্তীতে বীজগণিতকে বিভিন্ন অ-সংখ্যাসূচক বিষয়সমূহ যেমনঃ বিন্যাস, ভেক্টর, ম্যাট্রিক্স এবং বহুপদী তে ব্যাপ্ত করে। এই অ-সংখ্যাসূচক বিষয়সমূহের কাঠামোগত বৈশিষ্ট্যগুলি তখন গ্রুপ, রিং এবং ক্ষেত্রের মতো বীজগণিতক কাঠামোতে বিমূর্ত হয়।

ষোড়শ শতাব্দীর আগে, গণিত কেবল দুটি উপ-ক্ষেত্র, পাটিগণিত এবং জ্যামিতিতে বিভক্ত ছিল। যদিও কিছু কিছু পদ্ধতি, যা অনেক আগে বিকশিত হয়েছিল, যা আজকাল বীজগণিত হিসাবে গণ্য করা যেতে পারে, বীজগণিতের উত্থান এবং এরপরেই কেবল ১৬শ বা ১৭শ শতকের দিকে অগণিত ক্যালকুলাস গণিতের শাখা হিসাবে আবির্ভূত হয় । উনিশ শতকের দ্বিতীয়ার্ধ থেকে, গণিতের অনেকগুলি নতুন ক্ষেত্র আবির্ভূত হয়েছিল, যার বেশিরভাগই পাটিগণিত এবং জ্যামিতি উভয়ই ব্যবহার করেছিল এবং প্রায় সবগুলিই বীজগণিত ব্যবহার করেছিল।

আজ, বীজগণিত বৃদ্ধি পেয়েছে যতক্ষণ না এতে গণিতের অনেকগুলি শাখা অন্তর্ভুক্ত হয়েছে , যেমনটি গণিতের বিষয় শ্রেণীবদ্ধকরণে দেখা যায়। [৬] যেখানে প্রথম স্তরের কোন অংশকে (দুটি অঙ্কের সংখ্যা) বীজগণিত বলা হতো না। আজ বীজগণিতের মধ্যে রয়েছে, ০৮-সাধারণ বীজগাণিতিক প্রক্রিয়া , ১২- ক্ষেত্র তত্ত্ব এবং বহুপদী, ১৩- বিনিময় বীজগণিত, ১৫- রৈখিক এবং বহুরেখা বীজগণিত ; ম্যাট্রিক্স তত্ত্ব, ১৬- সংযোজন রিং এবং বীজগণিত , ১৭- অসংযোজন রিং এবং বীজগণিত, ১৮- শ্রেণী তত্ত্ব ; সমসংস্থানিক বীজগণিত, ১৯- কে-তত্ত্ব এবং ২০- গ্রুপ তত্ত্ব । ১১- সংখ্যা তত্ত্ব এবং ১৪- বীজগাণিতিক জ্যামিতিতে বীজগণিত ব্যাপকভাবে ব্যবহৃত হয়।

ইতিহাস[সম্পাদনা]
মূল নিবন্ধ: বীজগণিতের ইতিহাস
বীজগণিতের আদি ইতিহাস[সম্পাদনা]

আল-খোয়ারিজমির আল কিতাব আল -মুখতাসার ফি হিসাব আল জাবর ওয়াল মুকাবালাহ্ এর একটি পাতা
বীজগণিতের উৎপত্তি প্রাচীন ব্যাবিলনীয়দের[৭] কাছে শনাক্ত করা যায়, যারা একটি উন্নত পাটিগণিত ব্যবস্থা তৈরি করেছিল, যার সাহায্যে তারা একটি অ্যালগরিদমিক প্রক্রিয়ায় গণনা করতে সক্ষম হয়েছিল। ব্যাবিলনীয়রা রৈখিক সমীকরণ, দ্বিঘাত সমীকরণ এবং অনির্দিষ্ট রৈখিক সমীকরণ ব্যবহার করে বর্তমানে সমাধান করা সমস্যাগুলির সমাধান করার জন্য সূত্র তৈরি করেছিল। বিপরীতে, এই যুগের বেশিরভাগ মিশরীয়রা, পাশাপাশি গ্রীক ও চীনা গণিতও খ্রিস্টপূর্ব ১ম সহস্রাব্দে, সাধারণত জ্যামিতিক পদ্ধতি দ্বারা সমীকরণগুলি সমাধান করেছিল। যেমন রিহিন্দ ম্যাথমেটিক্যাল পাপিরাস, ইউক্লিডের উপাদানসমূহ এবং দ্য ম্যাথমেটিকাল আর্টস এর নবম অধ্যায়ে যার উল্লেখ পাওয়া যায় । গ্রীকদের জ্যামিতিক কাজ সূত্রকে সাধারণীকরণের জন্য নির্দিষ্ট সূত্রকে আরও সাধারণ পদ্ধতিতে উল্লেখকরণ ও সমীকরণের সমাধানের বাইরে সূত্রকে সাধারণীকরণের কাঠামো সরবরাহ করেছিল, যদিও মধ্যযুগীয় ইসলামে গণিতের বিকাশ না হওয়া পর্যন্ত এটি উপলব্ধি করা সম্ভব হয়নি।[৮]

প্লেটোর সময়কালে গ্রিক গণিতের ক্ষেত্রে এক বিরাট পরিবর্তন ঘটে গেছে । গ্রীকরা একটি জ্যামিতিক বীজগণিত তৈরি করেছিল যেখানে পদগুলি জ্যামিতিক বস্তুর পক্ষ দ্বারা প্রতিনিধিত্ব করা হতো, সাধারণত রেখা যেগুলির সাথে অক্ষর যুক্ত ছিল। [৪] দাওফান্তাস (খ্রিস্টীয় তৃতীয় শতাব্দী) ছিলেন আলেকজান্দ্রীয় গ্রিক গণিতবিদ এবং অ্যারিথমেটিকা নামে একাধিক বইয়ের লেখক। এই গ্রন্থগুলি বীজগাণিতিক সমীকরণগুলি সমাধান করার বিষয়ে আলোচনা করে,[৯] এবং সংখ্যা তত্ত্বকে ডায়োফান্তাইন সমীকরণের আধুনিক ধারণার দিকে নিয়ে গেছে।

উপরে আলোচিত পূর্ববর্তী ঐতিহ্যসমূহ ফার্সি গণিতবিদ মুহম্মদ ইবনে মুসা আল-খোয়ারিজমি (সি. ৭৮০-৮৫০) -এর উপর প্রত্যক্ষ প্রভাব ফেলেছিল। পরবর্তীতে, তিনি কমপ্লেশিয়াস বুক অন ক্যালকুলেশন বাই কমপ্লেশন অ্যান্ড ব্যালান্সিং লিখেছিলেন, যা বীজগণিতকে একটি গাণিতিক নিয়ম হিসাবে প্রতিষ্ঠিত করে;যা জ্যামিতি এবং পাটিগণিত থেকে স্বতন্ত্র। [১০]

হেলেনিস্টিক গণিতবিদ আলেকজান্দ্রিয়ার নায়ক এবং ডিওফ্যান্টাসের গণিতবিদগণ [১১] পাশাপাশি ব্রহ্মগুপ্তের মতো ভারতীয় গণিতবিদরা মিশর এবং ব্যাবিলনের ঐতিহ্য অব্যাহত রেখেছিলেন, যদিও ডিওফ্যান্টাসের অ্যারিথমেটিকা এবং ব্রহ্মগুপ্তের ব্রহ্মসুফাসিদ্ধন্ত উচ্চ স্তরে রয়েছে। [১২] উদাহরণস্বরূপ,৬২৮ খ্রিস্টাব্দে দ্বিঘাত সমীকরণের জন্য শূন্য ও ঋণাত্মক সমাধানসহ শব্দের মাধ্যমে প্রথম সম্পূর্ণ গাণিতিক সমাধানটি [১৩] ব্রহ্মগুপ্ত তাঁর “ব্রহ্মসুফাসিদ্ধন্ত” গ্রন্থে বর্ণনা করেছিলেন। পরবর্তীতে,ফার্সি ও আরবি গণিতবিদগণ বীজগণিত পদ্ধতিগুলি কঠোর পরিশ্রমের মাধ্যমে উন্নত করেছিলেন। যদিও ডিওফান্টাস এবং ব্যাবিলনীয়রা সমীকরণগুলি সমাধানের জন্য বেশিরভাগ বিশেষ অ্যাডহক পদ্ধতি ব্যবহার করেছিল, আল-খয়ারিজমির অবদানটি ছিল মৌলিক। তিনি বীজগাণিতিক প্রতীক, ঋণাত্মক সংখ্যা বা শূন্য ছাড়াই রৈখিক এবং দ্বিঘাত সমীকরণগুলি সমাধান করেছিলেন, সুতরাং তাকে বিভিন্ন ধরনের সমীকরণকে আলাদা করতে হয়েছিল।

যেখানে বীজগণিতকে সমীকরণ তত্ত্বের সাথে সম্পৃক্ত করা হয়েছে,সেখানে গ্রিক গণিতবিদ ডিওফ্যান্টাস ঐতিহ্যগতভাবে “বীজগণিতের জনক” হিসাবে পরিচিতি পেয়েছেন এবং যেখানে সমীকরণগুলি পরিচালনা ও সমাধানের নিয়মগুলির সাথে সম্পৃক্ত , সেখানে ফার্সি গণিতবিদ আল-খোয়ারিজমিকে “বীজগণিতের জনক” হিসাবে বিবেচনা করা হয় । [১৪][১৫][১৬][১৭][১৮] [১৯] কে (সাধারণ অর্থে) “বীজগণিতের জনক” হিসাবে পরিচিত হওয়ার অধিক অধিকারপ্রাপ্ত তা নিয়ে এখন বিতর্ক রয়েছে। আল-জাবরের মধ্যে পাওয়া বীজগণিতটি অ্যারিথমেটিকাতে পাওয়া বীজগণিতের তুলনায় কিছুটা বেশি প্রাথমিক এবং অ্যারিথমেটিকা বাকবিতণ্ডিত, যেখানে আল-জাবর সম্পূর্ণরূপে আলংকারিক । [২০] যারা আল-খুয়ারিজমিকে সমর্থন করেন তারা এই বিষয়টির দিকে ইঙ্গিত করেন যে তিনি ” পক্ষান্তর ” এবং “ভারসাম্য”র পদ্ধতিগুলি চালু করেছিলেন (সমীকরণের এক দিক থেকে অন্য দিকে পদের স্থানান্তর, অর্থাৎ, সমীকরণ এর বিপরীত দিকে একই পদের বাতিলকরণ) যা ‘আল-জাবর’ শব্দটি দ্বারা মূলত বোঝানো হয়েছে,[২১] এবং তিনি দ্বিঘাত সমীকরণগুলি সমাধান করার একটি বিস্তৃত ব্যাখ্যা দিয়েছেন,[২২] এছাড়া তাঁর বীজগণিত আর মাথাব্যথার কারণ ছিল না ” সমস্যার একটি সিরিজ পুনঃমীমাংসা করার সাথে , কিন্তু একটি বর্ণনামূলক বর্ণনা যা আদি পদের সমন্বয়ে গঠিত হয়,যেখানে সকল বিন্যাস সমীকরণ গঠনের জন্য সকল নিয়ম কানুন অবশ্যই দিবে,যা অতঃপর স্পষ্টভাবে অধ্যয়নের সত্য বস্তু গঠন করে”। তিনি একটি সমীকরণের স্বার্থে সমীকরণটি অধ্যয়নও করেছিলেন এবং “সাধারণ পদ্ধতিতে, কারণ এটি কোনও সমস্যার সমাধান করার ক্ষেত্রে কেবল উত্থিত হয় না, তবে এটি একটি অসীম শ্রেণীর সমস্যার সংজ্ঞা দেওয়ার জন্য বিশেষভাবে কাজে আসে”।

অপর ফার্সি গণিতবিদ ওমর খৈয়ামকে বীজগাণিতিক জ্যামিতির ভিত্তি শনাক্ত করার জন্য সম্মানিত করা হয় এবং তিনি ঘন সমীকরণের সাধারণ জ্যামিতিক সমাধান আবিষ্কার করেছিলেন।তাঁর গ্রন্থ ট্রিটাইজ অন ডেমোনস্টেশনস অফ প্রবলেমস অফ অ্যালজেবরা (১০৭০)এ বীজগণিতের নীতিমালা রচনা করেন, যা ফার্সি গণিতের অংশ যা শেষ পর্যন্ত ইউরোপে স্থানান্তরিত হয়েছিল। [২৩] তবুও আরেক ফার্সি গণিতবিদ শারাফ আল দিন আল তুসি ঘন সমীকরণের বিভিন্ন ক্ষেত্রে বীজগাণিতিক এবং সংখ্যাসূচক সমাধান খুঁজে পেয়েছিলেন । [২৪] তিনি একটি ফাংশনের ধারণাও বিকাশ করেছিলেন।ভারতীয় গণিতবিদ মহাবীর এবং দ্বিতীয় ভাষ্কর ফারসি গণিতবিদ আল-কারাজি,[২৫] এবং চীনা গণিতবিদ চু শি-চিয়ে, ঘনের বিভিন্ন ঘটনা সমাধান , দ্বিঘাত সমীকরণ, কুইন্টিক এবং উচ্চতর-পর্যায়ের বহুপদী সমীকরণ সমাধানের জন্য সংখ্যাগত একটা পদ্ধতি ব্যবহার করেন।১৩তম শতকে, একটি ঘন সমীকরণ গণিতবিদ ফিবোনাচ্চি দ্বারা সমাধান ইউরোপীয় বীজগণিতে রেনেসাঁ শুরুর একটি প্রতিনিধি। আবু আল-আসান ইবন আলি-আল-কালাসাদি (১৪১২-১৪৮৬) “বীজগণিতে প্রতীকবাদের প্রবর্তনের দিকে প্রথম পদক্ষেপ গ্রহণ করেছিলেন”।তিনি ∑ n 2, ∑ n 3 গণনা করেছিলেন এবং বর্গমূল নির্ধারণের জন্য ক্রমাগত আনুমানিক পদ্ধতিটি ব্যবহার করেছিলেন।[২৬]

বীজগণিতের আধুনিক ইতিহাস[সম্পাদনা]

ইতালিয়ান গণিতবিদ জিরোলামো কার্দানো ১৫৪৫ সালে রচিত তাঁর গ্রন্থ আরস ম্যাগনা-তে ঘন এবং দ্বিঘাত সমীকরণের সমাধান প্রকাশ করেছিলেন।
১৬শ শতাব্দীর শেষের দিকে নতুন বীজগণিত নিয়ে ফ্রান্সোইস ভিয়েটের কাজ আধুনিক বীজগণিতের দিকে গুরুত্বপূর্ণ পদক্ষেপ ছিল। ১৬৩৭ সালে, র‍্যনে দেকার্ত স্থানাঙ্ক জ্যামিতি আবিষ্কার করেন এবং আধুনিক বীজগাণিতিক চিহ্ন প্রবর্তন করে লা জিওম্যাট্রি প্রকাশ করেছিলেন।বীজগণিতের আরও বিকাশের আরেকটি মূল ঘটনা হল ঘন এবং দ্বিঘাত সমীকরণগুলির সাধারণ বীজগাণিতিক সমাধান,যা ১৬তম শতাব্দীর মাঝামাঝি সময়ে বিকশিত হয়েছিল।নির্ণায়কের ধারণাটি ১৭তম শতাব্দীতে জাপানি গণিতবিদ সেকি কোওয়া বিকাশ করেছিলেন এবং ম্যাট্রিক্স ব্যবহার করে এক সাথে রৈখিক সমীকরণের সিস্টেমগুলি সমাধানের উদ্দেশ্যে দশ বছর পরে গটফ্রাইড লাইবনিজ স্বাধীনভাবে তার অনুসরণ করেছিলেন। জোসেফ-লুই ল্যাঞ্জরেজ বিন্যাস অধ্যয়ন করেছিলেন,তিনি তার ১৭৭০-এর গবেষণাপত্র ” রেফ্লেকশনস সুর লা রিসুলিউশন অ্যালজেব্রিক ডেস অ্যাকুয়েশনস “বাংলায় “বীজগাণিতিক সমীকরণ সমাধানের জন্য নিবেদিত” যেখানে তিনি ল্যাঞ্জরেজ রেসলভেন্টস প্রবর্তন করেছিলেন।পাওলো রুফিনি প্রথম ব্যক্তি ছিলেন যিনি বিন্যাসের গ্রুপ তত্ত্বটি বিকাশ করেছিলেন এবং তাঁর পূর্বসূরীদের মতো বীজগণিত সমীকরণ সমাধানের প্রসঙ্গেও তিনি অবদান রেখেছিলেন।

সমীকরণ সমাধানে আগ্রহ , প্রাথমিকভাবে গ্যালোয়া তত্ত্ব এবং গঠনমূলক বিষয়ের উপর দৃষ্টি নিবদ্ধ করার কারণে ১৯তম শতাব্দীতে বিমূর্ত বীজগণিত উন্নতি সাধন করেছিল। [২৭] জর্জ পিইকক্ গণিত এবং বীজগণিত মধ্যে অচলিত চিন্তাধারা প্রতিষ্ঠাতা করেছিলেন। অগাস্টাস ডি মরগান তার প্রস্তাবিত যুক্তির সিস্টেমে রিলেশনাল বীজগণিত আবিষ্কার করেছিলেন। জোসিয়াহ উইলার্ড গিবস ত্রি-মাত্রিক স্থানের ভেক্টরগুলির একটি বীজগণিত বিকাশ করেছিলেন এবং আর্থার কেলি ম্যাট্রিক্সের একটি বীজগণিত বিকাশ করেছিলেন (এটি একটি অনিয়মিত বীজগণিত)।

বীজগণিত শব্দটিসহ গণিতের ক্ষেত্রসমূহ[সম্পাদনা]
গণিতের কিছু ক্ষেত্র যা বিমূর্ত বীজগণিতের শ্রেণিবিন্যাসের আওতায় আসে তাদের নামে বীজগণিত শব্দটি রয়েছে; রৈখিক বীজগণিত এর একটি উদাহরণ। অন্যদের নামে অবশ্য বীজগণিত শব্দটি নেই : গ্রুপ তত্ত্ব, রিং তত্ত্ব এবং ক্ষেত্র তত্ত্ব তার উদাহরণ। এই বিভাগে, আমরা গণিতের কিছু ক্ষেত্র তালিকাভুক্ত করেছি যাদের নামের সাথে “বীজগণিত” শব্দটি রয়েছে ।

প্রাথমিক বীজগণিত, বীজগণিতের অংশ যা সাধারণত গণিতের প্রাথমিক পাঠ্যক্রমগুলিতে শেখানো হয়।
বিমূর্ত বীজগণিত, যার মধ্যে গ্রুপ, রিং এবং ক্ষেত্রের মতো বীজগণিত কাঠামো স্বতঃসিদ্ধ ব্যবস্থায় সংজ্ঞায়িত এবং গবেষণা করা হয়।
রৈখিক বীজগণিত, যেখানে রৈখিক সমীকরণের সুনির্দিষ্ট বৈশিষ্ট্য, ভেক্টর স্পেস এবং ম্যাট্রিক্স অধ্যয়ন করা হয়।
বুলিয়ান বীজগণিত, বীজগণিত একটি শাখা সত্য মান মিথ্যা এবং সত্য এর দ্বারা সংক্ষিপ্ত হিসাব করে ।
বিনিময় বীজগণিত, বিনিময় রিংগুলির অধ্যয়ন।
কম্পিউটার বীজগণিত , অ্যালগরিদম এবং কম্পিউটার প্রোগ্রাম হিসাবে বীজগাণিতিক পদ্ধতিসমূহের প্রয়োগ।
হোমোলজিকাল বীজগণিত, বীজগণিত কাঠামোর অধ্যয়ন যা টপোলজিকাল স্পেসগুলি অধ্যয়নের জন্য মৌলিক।
সর্বজনীন বীজগণিত, যেখানে সমস্ত বীজগণিত কাঠামোর সাধারণ বৈশিষ্ট্য অধ্যয়ন করা হয়।
বীজগণিত সংখ্যা তত্ত্ব, যেখানে সংখ্যার বৈশিষ্ট্যগুলি বীজগাণিতিক দৃষ্টিকোণ থেকে অধ্যয়ন করা হয়।
বীজগাণিতিক জ্যামিতি, জ্যামিতির একটি শাখা, এর আদি আকারে বক্ররেখা এবং পৃষ্ঠতলকে বীজগাণিতিক সমীকরণের সমাধানের সাথে সম্পৃক্ত করে।
বীজগণিত সম্মিলন, যেখানে সংযুক্তি প্রশ্নগুলি অধ্যয়নের জন্য বীজগণিত পদ্ধতি ব্যবহার করা হয়।
রিলেশনাল বীজগণিত : অন্বয়ের একটি সেট যা নির্দিষ্ট অপারেটরের অধীনে বন্ধ থাকে
অনেক গাণিতিক কাঠামোকে বীজগণিত বলা হয়:

একটি ক্ষেত্রের উপরে বীজগণিত বা আরও সাধারণতভাবে একটি রিংয়ের উপরে বীজগণিত
ক্ষেত্র বা রিংয়ের মধ্যে বীজগণিতগুলির অনেক শ্রেণীর একটি নির্দিষ্ট নাম থাকে:
সহযোগী বীজগণিত
অ-সহযোগী বীজগণিত
মিথ্যা বীজগণিত
হফ বীজগণিত
সি * -বীজগণিত
প্রতিসম বীজগণিত
বাহ্যিক বীজগণিত
টেনসর বীজগণিত
পরিমাপ তত্ত্ব ,
সিগমা-বীজগণিত
একটি সেটের উপর বীজগণিত
বিভাগ তত্ত্বে
এফ-বীজগণিত এবং এফ-সহযোগী বীজগণিত
টি-বীজগণিত
যুক্তিবিদ্যায় ,
রিলেশন বীজগণিত, একটি অবশিষ্ট বুলিয়ান বীজগণিত যেটি কনভার্স নামে পরিচিতি লাভ করে প্রসারিত হয়েছিল।
বুলিয়ান বীজগণিত, একটি পরিপূরক বিতরণ কাঠামো
হেইটিং বীজগণিত
প্রাথমিক বীজগণিত[সম্পাদনা]

বীজগাণিতিক সমীকরণের চিহ্নসমূহ :
1 – ঘাত (সূচক)
2 – সহগ
3 – পদ
4 – প্রক্রিয়া চিহ্ন
5 – ধ্রুবক পদ
x y c – চলক/ধ্রুবক
প্রাথমিক বীজগণিত বীজগণিতের সর্বাধিক প্রাথমিক রূপ।এটা ঐ সকল ছাত্রদের শেখানো হয় যাদের পাটিগণিতের সাধারণ নীতিসমূহের বাইরে গণিতের কোন ধারণা নেই। পাটিগণিতে , কেবলমাত্র সংখ্যা এবং পাটিগণিত সংক্রান্ত প্রক্রিয়া চিহ্ন (যেমন +, −, ×, ÷) ব্যবহার করা হয়ে থাকে । বীজগণিতে , সংখ্যা অনেক সময় চলক এর মাধ্যমে প্রকাশ করা হয় (যেমন a, n, x, y অথবা z)। এটা খুবই গুরুত্বপূর্ণ কারণ :

এটি পাটিগণিতের সূত্রসমূহের সাধারণ সূত্রে পরিণত করতে সাহায্য করে (যেমনঃ a + b = b + a;যা সকল a এবং b এর জন্য সত্য ) এবং বাস্তব সংখ্যার সিস্টেমের ধর্ম সমূহের পর্যায়ক্রমিক আবিষ্কারের এটি প্রথম পদক্ষেপ ছিল।
এটি “অজানা” সংখ্যা সম্পর্কে ধারণা , সমীকরণের সূচনা এবং এগুলি কীভাবে সমাধান করা যাবে; সে বিষয়ে অধ্যয়নের অনুমতি দেয়। (উদাহরণস্বরূপ, “একটি সংখ্যা x বের কর, যাতে 3x + 1 = 10 হয়”। অথবা, আরও কিছুটা এগিয়ে “একটি সংখ্যা x বের কর যাতে ax + b =c হয় ” । এটি আমাদের এই সিদ্ধান্তে নিয়ে যায় যে, নির্দিষ্ট সংখ্যার প্রকৃতির নয়, যা আমাদের সমীকরণটি সমাধান করতে দেয়। বরং এক্ষেত্রে সমীকরণ এর অন্তর্ভুক্ত অপারেশনগুলিই মুখ্য ভূমিকা পালন করে থাকে ।
এটি ফাংশনসম্পর্কিত সম্পর্ক গঠন করতে অনুমতি দেয়। (উদাহরণস্বরূপ , “যদি তুমি x টিকিট বিক্রি করো , তবে তোমার মুনাফা হবে 3x − 10 টাকা , অথবা f(x) = 3x − 10, সেখানে f হল ফাংশন , এবং x হল ঐ সংখ্যা যার উপর ফাংশনটি কাজ করছে। “)